
Nano Indenter® G200X
特點和優勢
域的創新貢獻獎
增強的載荷加載系統
新一代 Nano Indenter G200X 系列納米壓痕儀是具有從納牛到牛頓最為完整的加載力範圍,並且不同的加載裝置可自動軟件切換,整個測試流程都是全自動的,極大的提高了測試數據的可靠性和可重覆性,避免了可能的人為因素的影響,確保每個測試都是合理、一致、精確。
Nano Indenter G200X 納米壓痕儀標準配置是 XP 加載系統 (最大為500mN), 位移分辨率< 0.01納米,最大壓入深度> 500 微米,可應用到所有的測試功能。壓頭更換輕松完成,超高的機架剛度極大的減少了系統對測試的影響。
高精度加載裝置
IF50是高分辨的納米納牛力加載模塊,它既可以單獨工作,也可以作為一個附件與Nano Indenter G200X 協同工作。由於其慣性質量很低,使得納米壓痕中的初始表面的選取更加靈敏、精確, IF50 在超低載荷下的納米壓痕測試具有極高的精確度和可重覆性,由於它自身的空載共振頻率遠高於一般建築物的振動頻率,這就使得一般的環境振動對它幾乎沒有影響,IF50具有很寬的動態頻率範圍 (0.1 Hz 到 300 Hz),所有這些特點使得 IF50可以提供同類設備不可比擬的高信噪比和高可靠性的試驗數據,例如右圖所示的藍寶石上三個納米深度的壓痕測試,在幾個納米的壓痕深度範圍內獲得了非常可靠的彈性模量。
大載荷加載裝置
最新一代 G200 X型納米壓痕儀測試系統,可以輕松地解決過去人們一直認為劃痕測試無法給出定量的、可靠的並且可重覆的測試結果這一難題,而且可以定量地研究過去無法獲得的表面劃痕的特性行為。利用垂直於劃痕方向的斷面掃描可以獲得劃痕深度、劃痕寬度以及凸起高度。利用該測試方法,還可以研究劃痕損傷後的粘彈性恢覆以及時效。
強化的微摩擦磨損測試功能
在機電體系中,軸承失效是很嚴重的問題,制造商使用覆雜且耗時的耐力試驗來評估其壽命長短。但是,也存在對全新的材料進行快速評估的需求。在這項工作中,我們使用納米壓痕和納米劃痕測試來評估軸承材料,替代之前的聲波傳播分析。納米劃痕測試造成的磨損區域的截面與聲波傳播分析的結果相對應。軸承鋼有著最小的磨損區域,接著是 PEEK 和 PTFE 覆合材料。因此,我們得出以下結論,納米劃痕測試可以快速的對軸承材料進行評估。此外,納米劃痕測試對材料的變形機制有進一步的分析,這是聲波傳播分析所不能得到的。在這項工作中,下面的磨損圖揭示出,軸承鋼是被裂紋碎片所破壞的,然而 PEEK 的破壞沒有裂紋碎片的參與。
增強的原位納米力學測試功能:Survey Scanning 圖像功能
Nano Indenter G200X 提供了非常強大的圖像功能,包括試樣斷截面掃描,實時調整掃描參數以及圖像後處理功能。最大掃描面積可達500 um x 500 um, 整體的平整度每100 um可達0.1%。該功能模塊對於較大試樣的劃痕和磨損 測試非常適用,對於非規則形狀或非均勻材料包括金屬、陶瓷、以及硬質塗層材料等的較大塊試樣非常有用。
超高精度成像定位功能
納米力學顯微鏡提供了真正意義上的原位納米力學測試功能,同一個金剛石頭既可以做納米壓痕測試,又可以實現原位的三維定量掃描成像,由於在 X 和 Y 方向均采用了位移傳感器和反饋系統,因此利用它可以輕松實現超高分辨率定位的納米壓痕測試。
本文仔細檢驗了與 Hertz 彈性接觸理論相關的假設,以及通過接觸掃描得到的剛度圖如何能被轉換成彈性模量圖。理論證明將剛度圖轉為力學特性圖是可能的,這其中涉及到眾多假設,且對於絕大多數熱點樣品都是無效的。本文通過碳纖維和熔融石英作為樣品,來詳細描述通過動態成像來檢測表面特征的意義,這是傳統的納米壓痕掃描技術所無法得到的。

Spider-81/80X is made by Crystal instruments company of USA,which is highly modular and extendable vibration control and dynamic date analysis system.
Hardware features
.newest hardware design.
.high precise
.easy connection to internet
.ease of use
.multi-modules and time synchronization
.ASAM-ODS date format avail
.high reliable design
.Complete vibration control and dynamic data analysis functions
Dynamic date analysis function
.time domain:mathematical computation(addition,subtraction,multiplication,division),integral,differential,average,peak,probability statistics,etc.
.spectrum analysis:FFT spectrum,auto power spectrum,Cross power spectrum,frequency response function
.real time raw data recording:Simultaneous recording of raw sample data while analyzing data in real time
.Sine frequency sweep transfer function test:
.shock response spectrum:
.programmable digital filter:Decimation filtering,IIR,FIR,auto-definition FIR.
.modal data acquisition and recording
.data post-processing function
Hardware capability
| model | Spider-81 | Spider-81A | Spider-81B | Spider-81X |
| Input channel | ||||
| Channel number | 8(multiple controllers can be integrated by ethernet to be a high way system.It can be expanded to 512 channels and able to connect to spider-81X in Parallel) | 16 | 2/4 | 8(multiple controllers can be integrated by ethernet to be a high way system.It can be expanded to 512 channels) |
| Max.sampling rate | 102.4KHZ(all channels) | |||
| Input range | ±20V | |||
| Input coupling ways | Charge,voltage or IEPE,single-ended and differential,AC or DC coupling | |||
| Dynamic range | >150DB | |||
| A/D digit | 24bit | |||
| Channel phase match | ±0.2degrees | |||
| Amplitude accuracy | ±0.2DB | |||
| Filter | Analog anti-aliasing filter,160db digital filter | |||
| Output channel | ||||
| Output channel number | 2(drive & cola) | 2(drive & cola) | 1(drive) | 2(drive & cola) |
| Dynamic range | 100db | |||
| Voltage range | ±10V | |||
| D/A digit | 24bit | |||
| Total harmonic | <-95db | |||
| Filter | 160db/oct digital filter,Analog filtering | |||
Vibration controller function
| Random vibration |
| Random on sine |
| Random on random |
| Random and random on sine |
| Sine sweep |
| Resonance search and dwell |
| Classical shock |
| Transient shock |
| Shock response spectrum |
| Road Spectrum Simulation |

三綜合試驗箱可以根據振動台的檯面尺寸定製不同的試驗容積;
紅外類比: 可選
三綜合試驗箱可以根據振動台的檯面尺寸定製不同的試驗容積;
紅外類比: 可選

Permanent Magnet Shaker
Dewesoft permanent magnet shakers are compact, lightweight and powerful general-purpose shakers which can be used for modal and vibration testing. They have high DUT capacity despite their small sizes. DYN-PM-20 and PM-100 have an integrated amplifier and a sine wave signal generator where the frequency can be adjusted from 1 Hz to 15,000Hz.
Advantages:
- Lightweight, durable, portable and easy to use
- Adjustable trunnion base provides a high degree of flexibility
- Broad frequency range
- Embedded power amplifier and signal generator for PM-20 and PM-100

Inertial Shakers
The shakers used in modal testing and in-flight tests of aircraft are usually electrodynamic shakers. However, the traditional shakers are not very portable and the attachment process takes time. Dewesoft inertial shakers are easily mounted and have great mobility. It can be used as a handheld.
Advantages:
- Compact and lightweight design
- Superior low-frequency performance
- Any angle mounting
- Low friction bearing guided

Shaker Amplifier Included
All our vibration shakers come included with an amplifier out of the box.
MS-20 and MS-100 vibration shakers have integrated amplifiers. With this integrated amplifier, it is very easy to use the shaker. You only need to plug the electric cable and the shaker is ready to run.
DS-MS-250 and DS-MS-440 come with a dedicated external amplifier. Specifications can be found on the tech specs page.
Modal Test
In real life applications, machine parts and mechanical systems are rarely under static loading. Most of the time they are excited by dynamic loads. The structure responds to these dynamic loads according to its dynamic parameters such as natural frequencies and mode shapes. Therefore, an engineer has to have a solid insight into the dynamic behaviour of the structure which has been designed. The process of finding the dynamic behaviour of a structure is called structural system identification.
Structural system identification consists of finding the transfer function of the system which is established by finding the modal parameters of the structure such as, natural frequencies, damping, modal vectors, and residues.
The transfer functions of a structure can be obtained by mathematical modelling or by experimental methods. The experimental way to obtain the transfer function of a structure is achieved by measuring the response of the structure to a measured input. The responses are generally acceleration and the inputs or excitations are generally impulses or random/sine signals.
More information on the Modal Analysis application page.